8 research outputs found

    Task partitioning for foraging robot swarms based on penalty and reward

    Get PDF
    This thesis is concerned with foraging robots that are retrieving items to a destination using odometry for navigation in enclosed environments, and their susceptibility to dead-reckoning noise. Such noise causes the location of targets recorded by the robots to appear to change over time, thus reducing the ability of the robots to return to the same location. Previous work on task partitioning was attempted in an effort to decrease this error and increase the rate of item collection by making the robots travel shorter distances. \par % Dynamic Partitioning Strategy (DPS) is introduced and explored in this thesis which adjusts the travelling distance from the items location to a collection point as the robots locate the items, through the use of a penalty and reward mechanism. Robots adapt according to their dead-reckoning error rates, where the probability of finding items is related to the ratio between the penalty and the reward parameters. \par % In addition, the diversity in the degrees of error within the members of a robot swarm and the performance repercussion in task partitioning foraging tasks is explored. This is achieved by following an experimental framework composed of three stages: emulation, simulation and hardware. An emulation is generated from an ensemble of machine learning techniques. The emulator allows to perform enriched analyses of simulations of the swarm from a global perspective in a relatively low time compared with experiments in simulations and hardware. Experiments with simulation and hardware provide the contribution of each robot in the swarm to the task

    A study of error diversity in robotic swarms for task partitioning in foraging tasks

    Get PDF
    Often in swarm robotics, an assumption is made that all robots in the swarm behave the same and will have a similar (if not the same) error model. However, in reality this is not the case and this lack of uniformity in the error model, and other operations, can lead to various emergent behaviours. This paper considers the impact of the error model and compares robots in a swarm that operate using the same error model (uniform error) against each robot in the swarm having a different error model (thus introducing error diversity). Experiments are presented in the context of a foraging task. Simulation and physical experimental results show the importance of the error model and diversity in achieving expected swarm behaviour

    Evolution of Diverse, Manufacturable Robot Body Plans

    Get PDF
    Advances in rapid prototyping have opened up new avenues of research within Evolutionary Robotics in which not only controllers but also the body plans (morphologies) of robots can evolve in real-time and real-space. However, this also introduces new challenges, in that robot models that can be instantiated from an encoding in simulation might not be manufacturable in practice (due to constraints associated with the 3D printing and/or automated assembly processes). We introduce a representation for evolving (wheeled) robots with a printed plastic skeleton, and evaluate three variants of a novelty-search algorithm in terms of their ability to produce populations of manufacturable but diverse robots. While the set of manufacturable robots discovered represent only a small fraction of the overall search space of all robots, all methods are shown to be capable of generating a diverse population of manufacturable robots that we conjecture is large enough to seed an evolving robotic ecosystem

    Hardware Design for Autonomous Robot Evolution

    Get PDF
    The long term goal of the Autonomous Robot Evolution (ARE) project is to create populations of physical robots, in which both the controllers and body plans are evolved. The transition for evolutionary designs from purely simulation environments into the real world creates the possibility for new types of system able to adapt to unknown and changing environments. In this paper, a system for creating robots is introduced in order to allow for their body plans to be designed algorithmically and physically instantiated using the previously introduced Robot Fabricator. This system consists of two types of components. Firstly, \textit{skeleton} parts are created bespoke for each design by 3D printing, allowing the overall shape of the robot to include almost infinite variety. To allow for the shortcomings of 3D printing, the second type of component are \textit{organs} which contain components such as motors and sensors, and can be attached to the skeleton to provide particular functions. Specific organ designs are presented, with discussion of the design challenges for evolutionary robotics in hardware. The Robot Fabricator is extended to allow for robots with joints, and some example body plans shown to demonstrate the diversity possible using this system of robot generation

    Practical Hardware for Evolvable Robots

    Get PDF
    The evolutionary robotics field offers the possibility of autonomously generating robots that are adapted to desired tasks by iteratively optimising across successive generations of robots with varying configurations until a high-performing candidate is found. The prohibitive time and cost of actually building this many robots means that most evolutionary robotics work is conducted in simulation, but to apply evolved robots to real-world problems, they must be implemented in hardware, which brings new challenges. This paper explores in detail the design of an example system for realising diverse evolved robot bodies, and specifically how this interacts with the evolutionary process. We discover that every aspect of the hardware implementation introduces constraints that change the evolutionary space, and exploring this interplay between hardware constraints and evolution is the key contribution of this paper. In simulation, any robot that can be defined by a suitable genetic representation can be implemented and evaluated, but in hardware, real-world limitations like manufacturing/assembly constraints and electrical power delivery mean that many of these robots cannot be built, or will malfunction in operation. This presents the novel challenge of how to constrain an evolutionary process within the space of evolvable phenotypes to only those regions that are practically feasible: the viable phenotype space. Methods of phenotype filtering and repair were introduced to address this, and found to degrade the diversity of the robot population and impede traversal of the exploration space. Furthermore, the degrees of freedom permitted by the hardware constraints were found to be poorly matched to the types of morphological variation that would be the most useful in the target environment. Consequently, the ability of the evolutionary process to generate robots with effective adaptations was greatly reduced. The conclusions from this are twofold. 1) Designing a hardware platform for evolving robots requires different thinking, in which all design decisions should be made with reference to their impact on the viable phenotype space. 2) It is insufficient to just evolve robots in simulation without detailed consideration of how they will be implemented in hardware, because the hardware constraints have a profound impact on the evolutionary space

    Investigation of starting conditions in generative processes for the design of engineering structures

    No full text
    Engineering design has traditionally involved human engineers manually creating and iterating on designs based on their expertise and knowledge. Bio-inspired Evolutionary Development (EvoDevo) generative algorithms aim to explore a much larger design space that may not have ever been considered by human engineers. However, for complex systems, the designer is often required to start the EvoDevo process with an initial design solution (seed) which the development process will optimize. The question is will a relatively good starting seed always yield a good set of design solutions. This paper considers this question and suggests that sub-optimal seeds can provide, up to certain limits, better design solutions than relatively more optimal seeds. In addition, this paper highlights the importance of designing the appropriate seed for the appropriate problem. In this paper, the problem analysed is the structural performance of a Warren Truss (bridge-like structure) under a single load. The main conclusion of this paper is that up to a limit sub-optimal seeds provide in general better sets of solutions than more optimal seeds. After this limit, the performance of sub-optimal seed starts to degrade as parts of the phenotype landscape become inaccessible

    Evaluation of frameworks that combine evolution and learning to design robots in complex morphological spaces

    No full text
    Jointly optimising both the body and brain of a robot is known to be a challenging task, especially when attempting to evolve designs in simulation that will subsequently be built in the real world. To address this, it is increasingly common to combine evolution with a learning algorithm that can either improve the inherited controllers of new offspring to fine tune them to the new body design or learn them from scratch. In this paper an approach is proposed in which a robot is specified indirectly by two compositional pattern producing networks (CPPN) encoded in a single genome, one which encodes the brain and the other the body. The body part of the genome is evolved using an evolutionary algorithm (EA), with an individual learning algorithm (also an EA) applied to the inherited controller to improve it. The goal of this paper is to determine how to utilise the results of learning process most effectively to improve task performance of the robot. Specifically, three variants are investigated: (1) evolution of the body+controller only; (2) a learning algorithm is applied to the inherited controller with the learned fitness assigned to the genome; (3) learning is applied and the genome is updated with the learned controller, as well as being assigned the learned fitness. Experiments are performed in three different scenarios chosen to favour different bodies and locomotion patterns. It is shown that better performance can be obtained using learning but only if the learned controller is inherited by the offspring
    corecore